Local modelling of Fluxes and Footprints

David Carruthers, Martin Seaton, Kate Johnson, Amy Stidworthy, Jenny Stocker

FAIRMODE Technical Meeting June 2018

Tallinn

Estonia

Cambridge Environmental Research Consultants

CERC

Environmental Software and Services

Contents

- Local modelling
- Source apportionment
 - standard approach
 - streamlined approach
- Other applications
- Concentration flux modelling
- Summary

Local modelling

ADMS-Urban models dispersion from a wide range of urban sources:

- Gaussian type model with point, line area, road and grid sources; non-Gaussian vertical profile of concentration in convective conditions
- Concentrations calculated at street-scale resolution (<10m)
- Includes meteorological pre-processor
- Options for different chemical mechanisms
- Considers effects of complex terrain: surface elevation and roughness
- Allows for the effects of buildings; fully integrated street canyon model;
- Integration with Geographical Information Systems (GIS) and an Emissions Inventory Database (EMIT)

CERC

Example ADMS-Urban emissions inventory

Minor road, commercial and domestic sources etc defined at lower resolution (1 km grid)

Local modelling

...but what else can we do with the model?

Example application: *air*TEXT: local air quality forecasts

Dispersion of emissions is modelled on a source-bysource basis, so *where chemistry* & *deposition can be neglected:*

- Detailed source apportionment & 'footprint modelling' is straightforward.
- Analytical expressions for the flux due to each source can be derived allowing detailed flux & 'flux footprint' calculations

FAIRMODE 2018

Source apportionment – standard approach

- For many years the model has been used to perform SA of NO_x and PM at monitor locations, where model results have been validated against the absolute magnitude of measured concentrations:
 - SA can be performed at other sites, away from the monitors e.g. schools
 - Using a combination of features in the dispersion model and emissions tools, SA by vehicle type and/or emissions type can be performed
 - SA according to spatial location can be performed Annual average NOx (μg/m³)

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
- Leads to a range of useful high-resolution, spatial source apportionment outputs

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
 Gridded NOx emissions (t/yr per km2)
- Starting with gridded emissions of NOx at 1km x 1 km resolution
- Data from the London Atmospheric Emissions Inventory
- Road traffic NOx adjusted in line with real-world emissions measurements

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
- Contributing grid sources for an example morning rush hour in January

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
- Contributing grid sources for an example morning rush hour in June

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
- Leads to a range of useful highresolution, spatial source apportionment outputs

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
- Leads to a range of useful highresolution, spatial source apportionment outputs

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
- Leads to a range of useful highresolution, spatial source apportionment outputs

- The model has now been developed to output 'concentration per source' or 'concentration per grid cell'
- Leads to a range of useful highresolution, spatial source apportionment outputs

Other uses of 'concentration per source'

 The 'concentration per source' output can be used within an air dispersion model optimisation technique that uses output from low-cost sensor networks

Define a cost function J(x) with two terms: one that describes the error in the modelled concentration (left-hand term) and one that describes the error in the emissions (right-hand term)

$$J(\mathbf{x}) = (\mathbf{M}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1} (\mathbf{M}\mathbf{x} - \mathbf{y}) + (\mathbf{x} - \mathbf{e})^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{e})$$

www.aqmesh.com/

The aim is to minimise J to obtain x, a vector of adjusted emissions.

Quantity	Definition	Dimensions
х	Vector of emissions (result)	n
Μ	Transport matrix relating the source term to the observations	n by k
у	Vector of observations	k
R	Error covariance matrix for the observations	k by k
е	Vector of first guess emissions	n
В	Error covariance matrix for the first guess emissions	n by n

More info: www.slideshare.net/ies-uk/amy-stidworthy-optimising-local-air-quality-models-with-sensor-data

Other uses of 'concentration per source'

 The 'concentration per source' output can be used within an air dispersion model optimisation technique that uses output from low-cost sensor networks

• In these inversion calculations:

Example hour: 7am on 5th July

- Reference monitor uncertainty set to 10%
- AQMesh sensor uncertainty set to 30%
- Covariance between Reference monitors (systematic error) set to 5%
- Covariance between AQMesh sensors (systematic error) set to 10%
- No covariance between Reference monitors and AQMesh sensors

More info: www.slideshare.net/ies-uk/amy-stidworthy-optimising-local-air-quality-models-with-sensor-data/

FAIRMODE 2018

Concentration flux modelling

- Various AQ measurement campaigns record concentration fluxes (e.g. ClearFlo* in London, AIRPRO** in Beijing)
- These measurements are elevated
- Why measure concentration flux?:
 - Fluxes are much less dependent on long-range pollutant transport compared to absolute concentrations
 - Fluxes are relatively insensitive to the spatial distribution of ground-level sources

so fluxes are a good way to quantify aggregated urban emissions, if wind speeds are non-negligible.

<u>*www.clearflo.ac.uk/</u>

Concentration flux modelling

Definition of vertical concentration flux (*per source plume*):

 Eddy diffusivity and concentration gradient can be derived from plume dispersion expressions

Concentration flux modelling

Summary

Concentrations

- Local-scale dispersion models can perform detailed source apportionment calculations on a source-by source basis (e.g. road sources, industrial sources, grid cells)
- Concentrations can be apportioned at high resolution in terms of:
 - Source of emissions (e.g. vehicle types)
 - Spatial extent

allowing targeted air pollution mitigation plans to be assessed

 'Concentration per source' output has other uses e.g. model optimisation using AQ sensor networks

Concentration fluxes

- Calculating concentration fluxes on a source-by-source basis allows:
 - Validation of flux measurements
 - Evaluation of emissions inventories
 - Greenhouse gas assessments

For both concentrations and concentration fluxes, it is important to evaluate against measurements where possible

FAIRMODE 2018

